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Abstract.  We show how to construct integral results for the multi-dimensional nonlinear diffusion equation 
Oc/Ot=V.(D(c)Vc), and for some generalisations of this. For appropriate boundary conditions these become 
integral invariants. An application of these results to determining the large-time behaviour of some radially 
symmetric problems is indicated. 

1. Introduction 

This paper is primarily concerned with nonlinear diffusion equations of the form 

Oc 
- -  = V .  ( D ( c ) V c )  (1.1) 
Ot 

which have a very large number of physical applications (see, for example, Crank [7]). 
Equation (1.1) may be rewritten in a more convenient form by introducing the Kirchhoff 
variable 

~c c w = D ( c )  d c ,  (1.2) 
o 

where c o is a specified constant; c o = 0 is usually chosen but that choice is clearly not 
acceptable when, for example, D ( c )  ~ c - m  as c---> 0 + with m i> 1. Equation (1.1) may then be 
written as 

oc =V2w. (1.3) 
Ot 

In this paper we shall show in Section 2 how integral results for (1.3) may be determined 
by solving a Laplace equation. For appropriate boundary conditions these results then give 
integral invariants. In Section 3 we extend these results to an inhomogeneous version of 
(1.1) and in Section 4 we consider some higher-order nonlinear diffusion problems. In 
Section 5 we consider a simple radially symmetric problem for (1.1) which indicates how our 
results may be applied in, for example, determining the appropriate large-time behaviour. 
We conclude with some discussion. 

2. Integral results for homogeneous diffusion 

We start by obtaining integral results for (1.3) on a fixed, simply connected domain I~ with 
boundary O~ by considering integrals of the form 
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l[ f]  = f n / ( x ) c  d V ,  (2.1) 

where appropriate forms of f(x) will be determined. We then have by (1.3) 

d I  
fa fV2w dV 

dt 

so that 

f (0w fo dI f -~n - w dS + wVZf dV (2.2) 
d s = .  7nn ' 

where O/On denotes the derivative in the outward normal direction. 
Hence, if we require f to satisfy 

v Z f = o ,  (2.3) 

then we have our basic integral result 

d, fo ( ( 2 . 4 )  d t  = n f ~n On/ 

which holds for any harmonic f(x). 
We now consider boundary conditions on (1.3) in the form 

w = g1(x, t) o n  0 ~ ~  1 , 

aw 
On - g2(x '  t)  o n  O~~ 2 , 

Ow 
- -  + K(x, t )w = g3(x, t) on 0123 , 
On 

where K, gl, g2 and g3 are given, 0121, 0~ 2 and 0123 are non-intersecting and further 
01"~ 1 U 0122 U 0123 = 01-L If we impose conditions on (2.3) of the form 

f = 0 on 0121 , 

Of = 0 on 01"12 , ( 2 . 5 )  
an 

0 f + K ( x , t ) f = 0  on 003 ,  
an 

then the value of the right-hand side of (2.4) may be calculated, independently of c(x, t). 
Specifically, we have 

a'f, Y fo fo -- gl ~ dS + fg2 dS + fg3 dS . (2.6) 
dt n~ 1~2 •3 

If gl = g2 = g3 = O, then I is an integral invariant; in the general case its value may be 
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determined over all time from (2.6), provided that the integral (2.1) exists for all time. 
If 12 is a finite domain then the only bounded solution of (2.3) and (2.5) is usually f---0;  

the important exception is when 0il  2 = 012 so that f = 1 is a solution and (2.6) gives the usual 
conservation of total mass result for the problem in which the flux Ow/On is given 
everywhere on the boundary. However ,  unbounded solutions for f can also give integral 
results. As a simple example we consider the two-dimensional case when 

i l =  {(r, O ) : 0 <  r<l,O<O<Oo}, 

where 00 is a constant, and Oil 1 = 011. Possible forms for f are then 

f = [r -'~/°° - r ~/°°] sin nTr___O0 Oo' 
with n = 1, 2, 3 . . . .  , which for n = 1, 00 > Ir/2 (at least) gives bounded integrals 

fafcdV--ff°fo'fcrdrdO. 
We note,  however,  that since f is singular at r = 0, care must be exercised in taking the 

limit r - + 0  in both the surface and the volume integral. In practice, an expression for the 
local behaviour at r = 0 in terms of the global behaviour results. 

If, however,  i l  is an infinite domain the position is rather  different. If we suppose that 
c ~ c o (a constant) at infinity then we should consider integrals of the form 

I[f] = fa f(x)(c - Co) d V ,  (2.7) 

and the only constraint on f at infinity is that it does not grow too fast so that the integral 
(2.7) is convergent.  If D(c)-+Do>O as c---~co, with D O constant, then w and c - c  o are 
likely to behave like exp(-r2/4Do t) as r = Ixl--,o  so that this requirement  on f is not a 
stringent one. Because of the weakness of the requirement  on the behaviour of f at infinity 
there may be many forms which are bounded for finite Ixl and which lead to finite integrals 
of the form (2.7). 

Another  context in which boundary conditions on f may not need be applied around the 
whole of 0fl is when we have a moving-boundary problem, so that 12---12(t) and 012(0 must 
be determined as part of the solution. These problems arise frequently, especially when 
D--+ 0 as c--+ 0 (or, to be more accurate, when So D(c) c-I dc < ~) since then if c initially has 
compact support then it does so for all time, with c = 0 on the moving boundary.  When 12 
varies with time, (2.2) becomes 

dI  
-dT= foa (f(~nn + qnc)-W ~n)dS+ fawV2f dV, (2.8) 

where qn(x, t) is the outward normal velocity of the moving boundary dO(t). Since 012(0 is 
to be determined two boundary conditions must be given there. If mass is conserved at the 
moving boundary we require 

Ow - -+qnc=O on 012(0 
On 
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and taking c o = 0 in (1.2) and assuming that c = w = 0 on (and outside) 012(0 , we then have 

f o ~ ( f ( ~ n  + q . c ) - W ~ n )  d V = O ,  

at least if f and Of/On are bounded on 01~(t). Hence as long as (2.3) is satisfied I is in general 
an integral invariant of the problem, without imposing boundary conditions on f. 

If mass is not conserved on the moving boundary,  for example for Stefan problems where 
typically 

Ow 
- -  + q~c  = - L q .  
On 

holds on 012 (where L is a given constant),  then integral invariants are not usually available 
since the position of Ol-l(t) is not known without solving the whole problem. 

For problems in which only part of the boundary is moving, the contributions from the 
fixed parts of the boundary to the surface integral in (2.8) must be retained. 

We conclude this section by making a few points about our results, including their relation 
to earlier work. 

(1) In one dimension, taking 12 = {x: 0 < x < s(t)}, (2.8) becomes 

x = s  d x  2 " 

Assuming that c = w = Ow/Ox = 0 on the moving boundary x = s(t) (or as x---~ +oo if s = oo) 
we have 

fl ( ) fl d d f  dw + w - -  dx 
dt f (x)c  dx = w ~x  - f ~x  x=o dx 2 " 

Satisfying d2f/dx 2 = 0 we obtain the conservation of mass result 

d (s Ow 
dt  Jo c d x = - ~ - x  x=O' 

and the centre of mass result 

d (, 
) 0  W x = 0  

xc dx = , 

which are well known (see, for example, Barenblatt  [4] and Vazquez [23]). 
Choosing f (x)  = x n, n = 2, 3, 4 . . . .  gives the other  moment  results: 

f0 s dt x"c dx = n(n - 1) x"-2w d x .  

This result (and similar results in higher dimensions) has been used to construct approximate 
solutions to nonlinear diffusion problems by assuming a particular form for c and exactly 
satisfying a finite number  of moment  relations; see Andriankin [1] and Pomraning [17-19]. 
Similar results have also been applied to linear convection-diffusion problems (see Aris [2]). 
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(2) For linear diffusion ( D ( c ) =  D o with D o constant) we can generalise our results by 
writing 

I [ f ]  = fa f(x, t )e  d V  

to give (for fixed 1~) 

d I  f ~ n n - C  d S +  +DoV c d V  d--t = D °  n ~nn 0-t ' 

which reduces to a surface integral if f is chosen to satisfy the backward heat equation 

Of + DoV2f = 0 
Ot 

By determining all such f satisfying the appropriate boundary conditions, it is in principle 
possible to essentially completely describe the diffusion process. 

The corresponding one-dimensional result was given by Steinberg and Wolf [22], and 
moment methods were applied to the analysis of one-dimensional diffused profiles by Ghez 
et al. [9], who assumed that the diffusion was linear. 

(3) The simplest solutions to (2.3) are f =  1 and f = x, y or z giving the conservation of mass 
result 

~-~ c dV= dS 
~-~-n 

and the centre of mass result 

dt  xc d V  = - n wfi dS  ' 

where fi is the unit outward normal. These multi-dimensional results were given in King [13]. 

(4) For radial symmetry in N dimensions, so that 

Of_ 1 0 ( l__~_r ) 
Ot r N - I  Or r N -  OW , 

the most general solutions to (2.3) are 

f =  a +/3r 2-N N # 2 , 

f = a +  /31nr  N = 2 ,  

where a and/3 are arbitrary constants. For a = 1, /3 = 0 we have the conservation of mass 
result 

d? [ ] r N - I c  dr = rN_ 1 0 W  rl -- (2.9) 
dt o ~ r  ro 
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while taking a = O,/3 = 1 gives a generalisation of the one-dimensional centre of mass result: 

dfrr' a t  o rc d r =  r -~r + ( N -  2 ) w  (2.10) 
r 0 

(which is the same as (2.9) when N = 2), and for N = 2 

df/  [ OW ] rl 
- -  r l n r c d r =  r l n r - ~ r - W  , (2.11) 
dt  o ~o 

with r 0 and r 1 constant in each case. 

(5) For the 'mesa' problem (Elliott et al. [8]) in which D ( c ) =  c m with m---~ ~ we have 

c - - t  -1/m in ~-~m(t) a s  m - - - ~ ,  (2.12) 

where ~-~m(t)C [~N is the mesa region in which c is uniform at leading order, while 

c - C(x) in ~N _ f~,~ , (2.13) 

where c =  C(x) a t t = 0 .  Then if 

I [ f  I = fn N f(x)c d V ,  

we have d I / d t  = 0 if V2f = 0 (assuming suitable behaviour at infinity), so that 

I = fRN fiX)C(X) dV 

for all time. This implies that 

fl.~ m f ( x )  d E -  t I/m fom f (x ) f (x )  dV . ( 2 . 1 4 )  

In particular in two dimensions we can choose 

f ( x ) = z  ~, w i t h n = 0 , 1 , 2  . . . .  and z = x + i y ,  

to give the corresponding moment results. The mesa problem is closely related to the 
Hele-Shaw problem for which it is known (Richardson [20, 21]; see also Howison [12]) that 
the motion is essentially completely described by the moments and an analogous result 
presumably holds here. It was pointed out in Elliott et al. [8] and King [13] that in one 
dimension the leading-order solution to the mesa problem is completely determined by 
conservation of mass and centre of mass, and our result essentially generalises this to two 
(and probably more) dimensions. 

For other diffusion problems there is far more information contained in c(x, t) than that 
expressed by the asymptotic results (2.12) and (2.13), and our integral invariants certainly 
do not completely characterise the problem. 



Nonlinear diffusion equations 197 

(6) Convenient forms to use for f are often, in two dimensions, 

f = r " c o s n O  and f = r " s i n n O ,  

and in three dimensions 

f=r"P".'(cosO)cosm~, m = O ,  1 . . . . .  n ,  

and 

f =  n m ~ • ~ r P , ( c o s 0 ) s i n m ~ ,  m 1 , 2 , . .  n 

where n = 0, 1 , . . . ,  and pm denotes the associated Legendre function. We will not, 
however, discuss detailed applications of these here. 

Terms of the form, in two dimensions: 

f = l n r ,  f = r - " c o s n 0  and f = r - " s i n n 0 ,  

and in three dimensions: 

f=r-"pm_I(cosO) cosmq~ , m = 0 , 1 , . . . , n - 1 ,  

and 

f ~ _ _ _  - n  m = . , r P , _ l ( c o s 0 ) s i n m q ~ ,  m 1 , 2 , . .  n - l ,  

with n = 1, 2 . . . .  can also be used. Care, however,  must be taken to ensure that the integral 
(2.1) exists, and the term 

f~a wV2f dV 

in (2.2) must be handled appropriately since these forms of f are not harmonic at r = 0. 

(7) Although the original problem is nonlinear, (2.2) is linear in f so linear combinations of 
integral invariants also give invariants. 

(8) In King [15] similarity solutions which correspond to the invariants (2 .9)-(2 .10)  are 
explicitly constructed for power-law diffusivities. 

3. Inhomogeneous diffusion 

Grundy [10] has obtained two integral invariants for inhomogeneous nonlinear diffusion in 
one dimension which we now generalise by considering equations of the form: 

p(x) OcaT = V. (K(x)Vw) , (3.1) 

where p and K are prescribed and w is related to c by (1.2). 
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I[f] = fa fix)pc d V ,  

then if 1~ is fixed we have 

dld~ = a K  f ~ n  - W ~ n  d S +  wV.(KVf) d V ,  

so that integral results are obtained from solutions to the linear equation 

V. (KVf) = 0.  (3.2) 

Once again f = 1 gives conservation of mass, while in one dimension (3.2) also gives 

f0 ~ 1 f = K(x'--~ dx ' ,  

which gives the generalised centre of mass result obtained by Grundy [10]. 
When (3.1) is linear, generalisations are again made possible by writing f(x, t). We also 

note that radially symmetric homogeneous problems are equivalent to particular inhomoge- 
neous one-dimensional problems. 

4. Higher-order diffusion 

Recently (Smyth and Hill [23], Bernis and Friedman [6]) interest has arisen in higher-order 
nonlinear diffusion equations of the form 

O.___uu = -V .  ( F(u)•(VZu)) (4.1) 
Ot 

and in even-higher-order problems (the equation 

°R = v.  (u3V(V4u)) 
Ot 

has arisen in the modelling of semiconductor-device fabrication (King [14])). 
Equation (4.1) has the conservation of mass result 

df £ u dV= - F(u) 0 , ~ -~n (v2u) dS ,  

but in general there are apparently no other integral results of the forms we have been 
discussing. 

In the linear case F(u) = 1 we have 

dt 
f ( x , t ) u d V = f ~  ( 0 (V2f)u_V2 f Ou Of VZu _ f 0 ) 

+ 0~ ~nn (v2u) dS 
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so that integral results can be constructed from solutions to the backward equation 

Of 0Z =v4f 

Particularly simple cases are represented by f = 1, x, x 2 and x 3. 

Another  case in which a further integral result is available is the one-dimensional  problem 
with F ( u )  = u + uo,  with u 0 constant. Then we have the centre of mass result £ [ ()2]. 

d Xl 1 OU 
d t  x u  d x  = - x ( U  + Uo) 03u - ( u  + uo)  02u + 

,, Ox ---~ 0 7  2 7 x  x,, 

if x o and x 1 are constant. If  u o = O, so that 

0/g __ 0 ( O3U 

Ot Ox u ~x3  / , (4.2) 

a mass-preserving similarity solution can be written down explicitly (Smyth and Hill [23]). If  
we seek a solution to (4.2) which conserves the first moment  

)~ x u  d x  , 

we write u = t - I / 3 f ( x / t l / 6 )  and we are able to integrate the corresponding ordinary differen- 
tial equation once to give 

1 d3f d2f 1 ( d f~  2 
a + g ~lZf = r l f  - -  - f - -  + 

d.r/3 dr/2 2 \ d r / /  ' 

where a is an arbitrary constant. 

We may generalise the Smyth and Hill [23] solution to higher dimensions by seeking 
solutions to the radially symmetric equation 

Ou 

Ot 
N 1 r N  l u  - -  r N -  1 

r Or Or r u - I  Or 

of the form 

u = t N / (N+4) f ( r / t  I/(N+4)) , 

in order to conserve the total mass 

f ~ N-  1 
r u d r .  

Setting the first constant of integration to zero we may then obtain: 

1 
f = (0~ + /3T~ 2-N "}- 'yn 2 + 7~4), N # 2 ,  

8(N + 2) (N + 4) 

1 
f = ~ ( a + / 3 1 n r / + y r / 2 + r / 4 ) ,  N = 2 ,  

where a,  /3 and y are arbitrary constants. 

Similar results can be obtained for equations of even higher order than (4.1). 
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5. A radially symmetric example 

Here  we cons ide r  a s imple  e x a m p l e  which  i l lus t ra tes  the  app l i ca t ion  of  some  of  our  resul ts .  

W e  cons ide r  

Oc 1 0 

Ot r N-I Or 

at r = l  w = 0 ,  

as r---> ~ w- -~O,  

a t t = 0  c = C ( r ) ,  

(5 .1)  

with 

dt  

d f f  Ow 
-dt rc d r  = Or ,=1'  

~1 ~ OW __d rN-lc  d r  = - - -  
d t  Or ,=l 

and  

1 n + l  
w - c (5.2)  

n + l  

choos ing  c 0 = 0; we no te  tha t  n > - 1  is n e e d e d .  O u r  l a rge - t ime  resul ts  app ly  also to m o r e  

genera l  p r o b l e m s  with D ( c ) ~  c ~ as c---> 0. 

F r o m  (2.9)  to (2 .11)  we have  

r l n r c d r = O  for  N = 2 ,  

assuming  in each  case  tha t  w--+ 0 suff icient ly fast  as r---> ~ .  H e n c e  we have  in tegra l  invar ian t s  

f/ r(r N-1 -- 1)c  d r  = r(r N-x - 1 ) C  d r ,  N # 2 ,  (5.3)  
l °e 

a nd  

jl r In rc d r  = r In rC  d r ,  

F r o m  (5.3)  we see tha t  if N = 1 

(x - 1)c dx  = (x - 1 )C  d x ,  

N = 2 .  (5.4)  

whe re  the  ini t ial  cond i t i on  C(r)  is specif ied.  We i l lus t ra te  how the  l a rge - t ime  b e h a v i o u r  of  

(5.1)  may  be d e t e r m i n e d  when  D ( c )  = c n so that  
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writing x in place of r. This is the usual centre of mass result (if we translate x by 1) and the 
large-time solution corresponding to (5.2) with n > - 1  is given by the dipole solution of 
Barenblatt  and Zel 'dovich [5]. This dipole solution has been generalised to higher dimen- 
sions by King [15], but we shall see that this generalisation is not appropriate to describing 
the large-time behaviour of (5.1) when N = 2 or 3. 

When N = 3, (5.3) becomes 

£~r(r -  l )cdr= f [  r ( r -1 )Cdr .  (5.5) 

Since we expect the concentration profile to spread out more and more with increasing time 
we expect the large-time behaviour of the left-hand side of (5.5) to be dominated by the 
total-mass term 

fo r2C dr, 

the diffusion lengthscale becoming much greater than 1. The appropriate large-time be- 
haviour for this constraint for (5.2) with n > - 2 is given by the instantaneous source solution 
of Barenblatt  [3] and Pattle [16] which takes the form 

c = t-3/°"+2)f[r/t '1°"+2~] (5.6) 

so that 

1 f n d f  
3n + 2 71f = d71 ' (5.7) 

and the constant of integration for (5.7) is determined explicitly from the initial data using 
(5.5). This solution does not satisfy the boundary condition w = 0 on r = 1, but corresponds 
to the leading-order outer  solution of a singular perturbation problem in which the outer 
scaling is given by 

r=O[t 1/(3n+2)] 

for large t. The inner scaling is r = O(1),  so that at leading order 

, o ( 0 £ )  2 r2 = 0 ,  
r a r  

a t r = l :  w = 0 ,  

as r---> + ~  : w---~t -3~"+')/°"+2)f"+'(0) 
n + l  

matching with (5.6), and the leading-order inner solution is 

W =  t - 3 (n+1) / (3"+2)  fn+l(0) (1-- 1) 
n+l r " 
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We note that the generalised dipole solution given in King [15] corresponds to the invariance 
of 

f f r c d r  

and is therefore not appropriate here. 
The intermediate case N = 2 is more delicate because of the occurrence of In r terms. We 

again expect the diffusion length to increase with time and we assume an outer scaling of 
r=O(s( t ) ) ,  where s(t) is to be determined but where s(t)--+~c at t--+~. Introducing 
-O = r/s(t) the left-hand side of (5.4) is dominated by 

s 2 In s -oc dr/ 
) 

which gives a conservation of mass type condition and implies that 

c - s  2 in-is f(r/s) (5.8) 

at t--~ 2. Substituting (5.8) into 

0c 10(  ) 
- r c "  (5.9) 

Ot r Or 

to obtain a balance we find that we need 

2 n  + 1 ds 
s ln"s d-t = O(1) 

which implies that the relevant diffusion lengthscale is 

s(t) = 11/2("+1) ln-n/2{"+l)t, 

and for large time 

c ~ t -~/~"+') In ~/¢"+x)tf(r/t~/2~"+~) ln-"/z~"+a)t). (5.10) 

If the In t terms were absent (5.10) would represent the usual (Barenblatt-Pattle) instanta- 
neous source solution to (5.9); in fact (5.10) is not the exact form of any similarity solution 
of (5.9) but a large time balance shows that f satisfies the same ordinary differential equation 
as the instantaneous source solution, namely 

2 ( n + l )  2-Of+-O2@ = ~  -of, ~df . (5.11) 

Integrating (5.11) gives 

1 df  
2(n + 1) -oaf= -of" d--~ 

and a constraint determined from (5.4) 
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rl f(n ) dr /=  2(n + 1) r In rC(r) d r ,  

determines the final constant of integration. The condition n > - 1  is again needed for a 
solution of the required form to exist. We note that the total mass associated with (5.10) 
decays in time as ln-tt.  

Once again the outer  solution (5.10) will not satisfy the condition w = 0 on r = 1 and in the 

inner region r = O(1) the dominant balance is given by 

, 0  ( ) 
r = 0  r Or 

at r = l "  w = 0 ,  

with solution 

w = c~(t) In r ,  

and matching at leading order  gives 

2 f"  +~(0) 
a(t)  - t ln2t 

(the matching is rather delicate but we omit details because it is outside the theme of this 
paper). We note,  however, that (as in the three-dimensional case) the leading-order outer 
solution can be determined by using the integral invariant without any reference to the 
matching. Here  the form of the large-time behaviour (5.10) would be extremely hard to 
determine without using the integral result. 

For linear diffusion n = 0 ,  and N = 3  we note that an exact solution to (5.1) for 
appropriate initial data is given by 

c -  (t+A0)3/e ( 1 -  1)er  (r l)2/4(t+to) , 

where A and t 0 are arbitrary constants. This is consistent with our asymptotic results. 
It was noted in Hill [11] and King [15] that the instantaneous source and generalised dipole 

solutions were identical when N = 2. For linear diffusion we can generate a new solution for 
N = 2 by using the superposition principle. We consider 

c = lim I A(t-N/2 e-r2/4t -- t(u/2)-2r2-N e-r2/4t) / (N--  

which is essentially the difference between the two solutions and gives 

c = A t - l l n ( ~ ) e  -r2/4' 

as an exact solution for N = 2. However ,  this solution is not appropriate to (5.1), and does 
not correspond directly to making the quantity 
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f o  r ln  rc dr (5.12) 

constant  in t ime even though  (5.12) can be der ived as the limit of  the difference be tween  

f o  rN- 1C dr and f o  rc d r ,  

which are constant  for  the ins tan taneous  source and dipole solutions respectively.  

For  l inear diffusion the t ransformat ion  

C *  = r c  , r *  : r 

conver ts  the N = 3 p rob lem into the N = 1 p rob lem and maps  the cor responding  fo rm of  

(2.9) into (2.10) and vice-versa.  Similarly, for  n - -  - 1  the t ransformat ion  

C* : r2c,  r* : I n  r 

maps  the N = 2 p rob lem into the N = 1 p rob lem (as no ted  in King [15]) and maps  (2.10) into 

(2.9) and (2.11) into (2.10). The  following form of  similarity variables for  N =  2, n = - 1 ,  

no ted  in King [15]: 

c = r  e l n r / e  at , 

where  A is an arbi t rary constant ,  is appropr ia te  for making  (5.12) constant  in t ime. 

6. Discussion 

We have derived a class of  integral  results for  nonl inear  diffusion equat ions  and illustrated 

their applicat ion th rough  a simple example.  They  are of  part icular  value in de termining the 

large-t ime behaviour  of  specific in i t ia l -boundary value problems as il lustrated in Section 5; 

the me thods  could equal ly well be applied to more  general  p roblems such as when w is 

prescr ibed as a funct ion of  t ime on r = 1. 

We have not  discussed in detail the applicat ion to genuinely  mult i -dimensional  p rob lems  

here ,  but  applications to nonl inear  diffusion under  a mask edge (an impor tan t  process in 

semiconduc to r  device fabrication) will be presented  elsewhere.  
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